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Two methods are proposed for solving the equations of radlative--conductive heat ex- 
change-analytic and computational. The efficiency of both methods is illustrated 
by specific examples of a calculation of the temperature fields and radiation fluxes 
at the cathode. 

Electrovacuum instruments (EVI) are widely used in different fields of technology. The 
reliability and durability of their operation depends to a strong degree on thermal factors, 
the analysis of which is a complex mathematical problem. At present, because of the sharp 
increase of the requirements on the reliability and longevity of EVI, the problem concerning 
the development of efficient engineering methodsof calculating their thermal cycle acquires 
great practical importance. Taking this requirement into consideration, the present paper 
explains certain methods of calculating the heat exchange in the components of EVI, the use 
of which will permit the necessary information about the thermal state of the instrument to 
be obtained quite rapidly. 

Formulation of the Problem. From the thermophysical point of view, an electrovacuum in- 
strument is a system of n components, located in a vacuum and exchanging thermal energy be- 
tween themselves. The transfer of thermal energy from one element to another can be accom- 
plished by two methods: by thermal conductivity and by radiation. 

It is well known that the calculation of radiative--conductive heat exchange in such sys- 
tems is associated with the solution of a number of problems, of which the most complex are 
the following: i) nonlinearity of the starting system of equations; 2) the presence of a 
large number of components mutually irradiating one another and in contact with one another; 
3) the complexity of the geometric shape of some of them (spirals, networks of different 
form, gaps of arbitrary geometry, etc.). Because of these difficulties, an exact calcula- 
tion of the temperature fields and radiation fluxes in these systems is possible only by 
numerical methods. However, when the number of components is large (n > 5), the use of di- 
rect numerical methods becomes ineffective, because of their unwieldiness. In these cases, 
it is advantageous to use semianalytical methods of calculation, the essence of which con- 
sists in the following. 

With specified thermophysical parameters, the nature of the temperature distribution in 
the i-th component participating in the heat exchange still with (n-- i) components depends 
on the values of the temperature gradients Tij , the distribution of internal heat sources, 
the density distribution of the incident radiation flux Ein c i and the intensity of the in- 
herent radiation of the component ~ociT ~. Inthosecases when l~igrad ril > l~oziT ~ -- 
eiEinc.il , and for the metallic components of the EVI this condition, as a rule, is satis- 

fied, it is advantageous to use a method of calculation based on the approximate evaluation 
of Einc. i and the boundary temperatures of the components Tij not of a rigorous system of n 

integral and n differential equations of radiation and thermal conductivity (which is almost 
impossible to solve), and from its approximating system in which all the equations, except 
two referring to the i-th component, are replaced by algebraic equations. The errors result- 
ing from this does not strongly distort the temperature distribution in the i-th component, 
if only the inequality stated above is satisfied. 

The use of average values of the integrated radiation fluxes, occurring as variables in 
the required algebraic equations, strongly simplify the solution of the problem with respect 
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to the temperature distribution in the i-th component, as in this case the necessity for 
solving the system of n integral radiation equations and n differential thermal conductivity 
equations is eliminated. The next two systems in this case decay into a system consisting of 
one integral and one dlfferential equation, and into a system conslstln~of 2(n -- i) algebra- 

ic equations with unknowns Qinc.k and T k (k = i, 2, ..., n -- i), where Qinc.k is the average 

value of the integrated radiation flux, incident on the surface of the k-th component and T k 
is the average temperature of the surface of this component. 

The system, consisting of one integral and one differential equation, determining the 
temperature distribution and the density of the radiation fluxes in the i-th component, can 
be solved by one of the approximate analytical methods -- by the method of perturbations. As 
the perturbing parameter is chosen, the degree of blackness of the component with respect to 
which the temperature distribution is being determined. As the majority of the components 
of electrovacuum instruments are made of metals or their alloys, the degree of blackness of 
which is less than 0.3, then this method allows a quite accurate solution to be obtained, 
even in the first approximation. 

In practice, the scheme of the solution described may be complicated, because the ne- 
cessity arises to determine the temperature distribution for two or more components, In this 
case, the general scheme of solution of these problems remains the same, but it is necessary 
to find the joint solution of two further differential and two integral equations, i.e., the 
complexity of the solution increases strongly. Usually, from the analysis of the physical 
pattern of the distributions of the sources and heat sinks in the system of n components, 
it can always be established for which components the temperature distribution should be de- 
termined, and for which it should not. Consequently, the method of calculation of the tem- 
perature fields and radiation fluxes described cannot be applied formally. It requires a 
preliminary analysis of the distribution pattern of the sources and heat sinks in the system 
of n components. 

Let us illustrate the use of the method described by the example of a calculation of the 
thermal cycle of an oxide cathode. 

Solution of the Radiative-Conductive Heat-Exchange Equations for an Oxide Cathode by the 
Metho~ of Perturbations. Figure i schematically shows the oxide cathode. It consists of six 
basic components. Component 1 is the oxide coating of the cathode. The oxide is a strongly 
porous medium, consisting of individual grains with a size of 1-3 Bm. The grains, represent~ 
ing a mixture of BaO, CaO, and SrO crystals, are semitransparent to thermal radiation. There- 
fore, the oxide can be considered as a gray medium, weakly absorbing and strongly scattering 
radiation. The thickness of the layer is 50-100 Bm. Because of the strong porosity, the 
effective value of the coefficient of thermal conductivity of the oxide is very small (on the 
order of 10 -4 W/cmedeg). Because of this, large temperature drops over the oxide are possi- 
ble. In connection with this, the main problem in calculating the thermal cycle of the ox- 
ide cathode is to determine the temperature of the oxide surface, on which the emission cur- 
rent of the cathode strongly depends [1]. 

Component 2 consists of two items made of nickel -- the core of the cathode and the cham- 
ber for the heater -- forming a closed cavity. The wall thickness of the cavity is 0.03~0.05 
cm. Inside the cavity is located a wire heater of bifilar construction (component 3). The 
thickness of the wire is 100-200 ~m and it has a length of tens of centimeters, The cathode 
support (component 4) is made of alloys with a low value of the coefficient of thermal con- 
ductivity. The wall thickness of the support varies in the limits 0.005-0.1 cm, and its 
length is of order 1 cm. Component 5 is a screen for reducing radiation losses from the 
cathode and is made of nickel with a thickness of order 0.05 cm. The cathode is braced to the 
foot of the electrovacuum instrument (component 8) by means of metal strips (component 6), as 
a rule made of nickel with a thickness of order 0.05 cm. The cathode is located in a vacuum 
tank (component 7). 

The scheme for calculating the thermal cycle of this cathode includes the problem of 
solving the system of heat-exchange equations, describing the process of heat transfer by 
radiation and thermal conductivity [2-4]. This system has the form: 

~l ~ T ,  4~on%zT ~ (~ + aG (z) = O, 0 < z < li, (1) 
dz 2 
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Fig. i. Sch~matlc diagram 
of the oxide cathode. 

I t  
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+ 2a----- f -  
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I ,  

- (r , , + R ,  J't(~:,T4(x)+(l_~,)Elr~.,(x)l(~,z(x)ax, (S) Q-tnc.z = ~ z  [ eesnR4T5 q- (1 - -  es) Qine.s] n 
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e --4 - -  f [(~eetTl (x) -4- (1 - -  e4) Eine.~ (x)l ~ (x) dx, (9)  ~ n ~ , =  ~ t". ,T, + (~ - -  ~) Oin=.,l + R, 
g . 

0 

( d T ,  I -- Z, k--~z /z=t ~ (R'~" -- R~) q- esOln~ 5 --- 2ooesxR~T~ q-le TS--le v~ ASe. (i0) 

The system of equations (i)-(i0) must be supplemented by the boundary conditions for the 
functions Tx(z) and Ta(z), which have the simple form: 

aT,) =0; T,(0)=~; T,(0)--T~; T,(h)=T~. (n) 
T z = i t  

The quantities r r and q, are calculated by the formulas: 
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where 

q! = 

1 
qb I _-- 
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11 
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0 
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l: 
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0 

0 

(12) 

(13) 

(14) 

(15) 

11 11 

L= = 2Oon"poe T~ (x) E= (li - -  x) dx + -~ YOo G (x) Ez (li - -  x) dx, 

0 0 

The system__of equations (i)-(i0) must be solved relative to ~, ~,, T--2, ~, Ta(z), G(x), 

Ta(z), Qinc.,' Qinc. 5' and Einc. 4 (z). 

The solution of the nonlinear system of equations (1)-(10) with the boundary conditions 
(ii) will be worked out by the method of perturbations. Following the formalism of this 
method, we expand all the unknown in series in powers of ~ and ca: 

{ ax, ~ = + (  ox, ~ ~, ( i=  i, 2 . . . .  io), (18) 
X~ ~ X~ ~ + k a= / ~ . = o  . &.~ /~_.~.=o 

where X (~ is the solution of the system of equations (i)-(i0) for a = 0 and ca = 0, 

If we put a and Ea equal to zero in Eq. (l)-(10), then we obtain a linear system of 
T~~ E(n) a, (z), and G(~ the solution equations relative to the functions T~ ~ (z), 

of which does not cause difficulties. In this case, system (1)-(10)_reduces to a system of 
nonlinear algebraic equations for calculating the average values of Qinc.i and Ti" The lat- 

ter is elementary solved numerically by the standard program. Having determined X (~ in this 
i 

way, we differentiate Eq. (i)-(ii) with respect to a and, assuming then that a and ca are 
equal to zero, we obtain a linear system of equations for determining the ten unknowns (3~/ 
~a)a=caffio. Then we differentiate system (1)-(ll) with respect to c4, and, assuming that ca 

and a are equal to zero, we again obtain a linear system of equations for determining the ten 
unknowns (~Xi/~c)~=c4=o. Thus, the method of perturbations converts one nonlinear system of 

heat-exchange equations into three linear systems, for which the analytical methods of solu- 
tion are well developed and will cause no difficulties. 

The accuracy of the method of perturbations can be judged by the curves shown in Fig. 2 
and 3, where 1 are the results of the calculations of the temperature distribution and the 
incident radiation flux density for component 4 (Fig. i), obtained by the method of perturba- 
tions; 2 are the similar curves, obtained by means of solving the systems of equations (6) 
and (7) by a direct numerical method, described in the next section. 

Solution of the Heat-Exchange Problem in a Cathode Unit by the Numerical Method. As al- 
ready pointed out, an exact calculation of the temperature fields and radiation fluxes is 
possible only on the basis of the use of numerical methods. Among them, the most promising 
is the finite-element method [5]. We shall show the special features of the use of this 
method by an example of the calculation of the temperature field of the cathode unit support 
(4 in Fig. l). 
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Fig. 2. Temperature distribution T4, *K, 
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over the height of the cathode support z'= 
z/R4: i) calculation by the method of perturbations; 2) by the numerical method. 

Fig. 3. Density distribution of incident radiation flux Einc. a, W/m a, over the 

height of the cathode support z' = z/R~: i) calculation by the method of perturba- 
tlons; 2) by the numerlcalmethod. 

Just as previously, we shall neglect the temperature drop over the wall thickness of 
the support, which corresponds to the use of one-dlmensional finite elements. In solvlng the 
problem, the reference region is divided up arbitrarily into individual sections -- cylindri- 
cal shells of finite height -- andwfthfn the ifmlts of each of them, the temperature distribu- 
tion T4(z) is approximated by a quadratic parabola. Its coefficients are related unambigu- 
ously wlth the values of the required temperature at three nodal points of each section, and 
the problem reduces in this way to the calculation of the nodal temperatures. 

The system of equations for determining these temperatures is obtained from the condi- 
tion of statlonarlty of the functional, equivalent to the boundary problem, including in ad- 
dition to the differential equation (6) the boundary conditions (ii). It is well known that 
thls functional has the form 

14 

l [ r , l  = .  -d~---- -f- 4 T~(z)-- T,(z) Etnc,(z) dz. (19) 

0 

If, in Eq. (19), we substitute the approximations assumed for T~(z) within the limits of each 
section, then it is found that the functional I[T4] degenerates into a function of N nodal 
values of temperature T~ i. Writing the necessary conditions of the extremum of this func- 
tion, we obtain a system of N algebraic equations relative to the nodal temperatures, of the 
following form- 

AT, = BEin c - -  C'rl �9 (20) 

Introducing for Elne. 4(z) the stepwlse approximation, which usually is assumed in the zonal 

method [2], instead of Eqs. (7)-(10) we also obtain a system of algebraic equations 

~,~ = ,~?,'. (21) 

Systems (20) and (21) obtained are solved jointly by the iteration method according to 
the following scheme: 

AT,(k+,) =BF-4nc.,k)- CT~(h), REtnc.(k+,) = FF~(h.t-,), (22) 

where k Is I the iteration number, so that when k = 0, it is supposed that T~o = 0 and Eqnc. o - 
0. The method solution described is easily progr~--,ed and converges quite rapidly. 

NOTATION 

To, foot temperature ~n, average temperature of heater; ~2 and Ts, mean temperatures 
of components 2 and 5; T,(z) and T~(z), functions of the temperature distribution over the 
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thickness of the oxide and over the height of the support 4; ~G(x), the quantity of radiant 
energy absorbed by unit volume of oxide; Qinc.i (i = 2.5), mean values of the integrated radi-.~ 

ation fluxes incident on the surface of components 2 and 5; Einc.~(z) , radiation flux dens- 

ity, incident on the surface of component 4; ~ and Uh, the current and voltage of the heater 

filament; a and b, coefficients defining the linear dependence aT3 + b of the specific elec- 
trical resistance of the heater on the temperature T3;~3, thickness of heater insulation; 
E i, h i, and li, the degree of blackness, coefficient of thermal conductivity, and linear size 

of the element with number i; u and y, mean values of the coefficients of absorption and 
scattering of radiation by the oxide; n, refractive index of oxide; p, coefficient of reflec- 
tion of radiation at the oxide--vacuum boundary; $iJ' mean values of the integrated angular 

coefficients of emission of the surfaces of the components; @ij(z), geometric coefficients 

of emission of a cylindrical element of height dz; En(Z), exponential integrals [4]; R~, ra- 

dius of the cathode; R~, radius of the heater wire; R~' and R~, outside and inside radii of 
the cylindrical support 4; AS6, cross-sectional area of the mountin~strips; T~, unknown vec- 
tor of the nodal values of the temperature of the cathode support; T~, vector of the fourth 
bower of the values of the required temperatures within the limits of the reference sections; 
Einc. , vector of the mean values of the incident flux densities on the inside surface of the 

sections of the support 4 and screens 2 and 5; A, B, C, R, and F, matrices of the coefficients 
of the systems of equations (20) and (21). 
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